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What is this talk about?

= What is Machine Learning, Neural Networks, and Deep Learning?
= Neural Networks concepts and topologies.

= A brief review of the use of python ML libraries.
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What can we do with data?

We are interested in:

Data Visualization.

Data Analysis (Identify features from the data).
Data Classification.

Implementation of different algorithms as intelligent as we can get.
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Which are the available algorithms?
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What about machine learning?

—~ — — — — ARTIFICIAL INTELLIGENCE
- A technique which enables machines
- - to mimic human behaviour

Lo

MACHINE LEARNING
Subset of Al technique which use
isti to enable

to improve with experience

Deep Learning

>~ DEEP LEARNING

~—_—— e Subset of ML which make the
computation of multi-layer neural
network feasible
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Why Deep Learning?

= Data driven approach.

= Can we learn the underlying features directly from data?

Low Level Features Mid Level Features High Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure
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1952

1958

1986

1995

Stochastic Gradient
Descent

Perceptron
*  Learnable Weights

Backpropagation
+  Multi-Layer Perceptron

Deep Convolutional NN
+  Digit Recognition

Cecilia Jarne

Neural Networks date back decades, so why the resurgence?

|. Big Data

¢ Larger Datasets
* Easier Collection
& Storage

IMAGE

2. Hardware

* Graphics
Processing Units
(GPUs)

* Massively
Parallelizable

Neural Networks and Keras

3. Software

Improved
Techniques
New Models
Toolboxes

f

Tensorflow
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How we split our data to train a model?

Available Data

A

[ |

Training Testing

(holdout

sample)

New Available Data
A
[
Training Validation Testing

(validation | (testing
holdout sample) = holdout sample)
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How we use (split) our data to train a model?

= Training set: The data where the model is trained on. We train our model,
by pairing the input with the expected output.

= Validation set: Data the model has not been trained on and is used to tune
hyperparameters. Here we estimate how well your model has been trained.

= Test set: Same like the validation set.. just used at the final end. This is an
Application phase: we apply our developed model to the real-world data and
get the results. This fase is split into two parts:

e First you look at your models and select the best performing approach
using the validation data (=validation).
e Then you estimate the accuracy of the selected approach (=test).

Cecilia Jarne Neural Networks and Keras cecilia.jarne@ungq.edu.ar 10/ 66


mailto:cecilia.jarne@unq.edu.ar

Neural Networks:

X, A Threshold
Summer unit

Output

Artificial Neuron

X A .
n W, W, W, W - Weights of Connection
b X, %, %, X~ Inputs | b -Bias
w® L W dendrites.
o0
2z _nucleus
Rl
062)
z N 7
X /
aon
. terminals
oG & in,
Xm
2 .
A o) in, z ‘ -
Inputs Hidden Final Output )
n,
bias
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The Perceptron: Forward Propagation

The structural building block of Deep Learning

Input — Weights — Sum — Non linearity — Output

Xq wy
wz ~
X2 -y — f y
w.
Xm
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The Perceptron: Forward Propagation

The structural building block of Deep Learning:

Input — Weights — Sum — Non linearity — Output

Xq wy

X2 i 'z_’f

S

Linear combination
Output of inputs

l ml
or(5 )

Non-linear
activation function
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The Perceptron: Forward Propagation

The structural building block of Deep Learning:

Input — Weights — Sum — Non linearity — Output

X
w; .
X2 ” E - f Y
W,
xm Linear combination

Output of inputs

! . | )
y=9 Wo+z X wg
\i:l

Non-linear Bias
activation function
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The Perceptron: Forward Propagation

The structural building block of Deep Learning:

Input — Weights — Sum — Non linearity — Output

Xq wy

b

X2 i z _’f

S

y=g(wo+X"W)

v ]

where: X =
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e Perceptron: Forward Propagation

Activation Functions

y=g(wot+tX™W)
/W/ *  Example: sigmoid function

9@z)=o0(@)=

=
™M
AN
=

1+e-2
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Neural Networks: Activation Functions

The purpose of Activation functions is to introduce non linearities into the
network

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (ReLU)
i - - ' . — s
06 3
04 2
02} 1
0 = 0
5 0 5 .

1 e —e *
y(Z)—ﬁ 9@)= 0= g(z)= max (0, z)
' 1, z>0
9'(2) = g9(2)(1-g(2) g9'(@@)=1-g(?* g9'(z) = {0‘ otherwise

tf.math.sigmoid(z) tf.math.tanh(z) tf.nn.relu(z)
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Neural Networks: Activation Functions

rm e e, D
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Neural Networks: Non linear decision

Linear activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions
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Building Neural Networks with Perceptrons

A simplified perceptron:

X1

1\2_'f__’h \Z oo

y X

Xm

m
Z =Wy +Z- Xj wj
j=1
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Building Neural Networks: Multi Outputs

Because all inputs are connected to all outputs these are called Dense

layers:
X1
y1=9(z1)
Zy
X2
xm

m
Zi = Wy +z' Xj Wi
j=1
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Single Layer Neural Network

w® LW
21 9z
X1
9(z2)
z2 N
X2
9(z3) 5;2
Xm
Z
B o(ea,)
Inputs Hidden Final Output

1) O 2
Zi =Wy, +Z XWii Yi= (W;L)*'Z 9(z) W(,.'))
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Single Layer Neural Network

m
1 1
Zy = Wo(,z) + Zj—lxj W)EZ)

1 1 1 1
= Wrg,z) + x4 W1(,2) + x; Wz(,z) + X wr(n)2
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A deep neural network structure

X1
Y -

Xz vee ;:_:‘ ‘e "

Zing

Xm

Inputs Hidden Output

K -1 k
Zk,i = wo(’i) + Z =1 g(zk 1,]) }(1)
}=
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Neural Networks:Loss Function

(... or Cost Function or Objective Function)

Depends on the kind of problem.

= Regression — Mean square error

= Classification — Cross entropy, binary cross entropy.
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Neural Networks:

Loss Functions

symbol name equation
£y Ly loss ly — o1
Lo Lz loss ly —ol3
Lioo  expectation loss ly —o(o)]x
Lyo0  regularised expectation los lly —(o)]||3
L., oo Chebyshev loss max; |cr(o)(3) — yU}|
hinge hinge [13] (margin) loss E] max(0, % — 5’(3}0(]))
hinge?  squared hinge (margin) loss ZJ max(0, % — 3ol
hinge®  cubed hinge (margin) loss Z] max(0, % —ylolys
log log (cross entropy) loss - Z] vy log 0(0)(’)
log? squared log loss — ZJ [y(f) ]oga’(o)(7}]2

_ 1)y, (a)
tan Tanimoto loss Teto) ||2+%;’HZ(_°%:1 YT
D Canchy-Schwarz Div _log Zz@y

og auchy warz Divergence [3] 0g TR

See: https://arxiv.org/pdf/1702.05659.pdfs

Cecilia Jarne
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Neural Networks: Crossentropy

Cross entropy loss can be used with models that output a probability between 0 and |

= f y
il

4,5 x 0.1 %X| |

x=|2 | & 9 08(%| 0

5 8 06V |

X2 s [

. H H

Jw) = %2;1 y®log (f(x(i); W)) +(1-yD)log (1 - f(x®; W))

Actual Predicted Actual Predicted
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Neural Networks: Mean square error

Mean squared error loss can be used with regression models that output continuous real numbers

f) y

4, 5 30| % |90
o2 80| %20
5 8 85 v 95

W) == (l) — @O, w Flnal Grades

Jw) = z y (x )) (percentage)

Actual Predicted
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Training Neural Networks: Loss Optimization

We want to find the network weights that achieve the lowest loss

1o : .
wr = argmin—z L(f(xD;w),y®)
W Nédi=1

W* = argmin (W)
w
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Training Neural Networks: Loss Optimization

We want to find the network weights that achieve the lowest loss

W* = argmin J (W)
w

J(wo,wy) ©
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Training Neural Networks: Loss Optimization

We want to find the network weights that achieve the lowest loss

Randomly pick an initial (wq, wy)

s
2
:
J(wo,wy) ©
|
:
s
'
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Training Neural Networks: Loss Optimization

We want to find the network weights that achieve the lowest loss

aw)
ow

Compute gradient,

J(wo, w1) )
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Training Neural Networks: Loss Optimization

We want to find the network weights that achieve the lowest loss

Take small step in opposite direction of gradient

s
2
'
J(wo,wy) ©
,
2
)
:
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Training Neural Networks: Loss Optimization

We want to find the network weights that achieve the lowest loss

Repeat until convergence

2+

J(wo, w1)

'
o
1
2
3

1
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Training Neural Networks:Gradient Decent

Cecilia Jarne

Algorithm

I
2.
3.

Initialize weights randomly ~\V" (0, 62)

Loop until convergence:

Compute gradient, ——— i ( )

Update weights, W « W — n———

Return weights

Neural Networks and Keras

aJ (W)

cecilia.jarne@ungq.edu.ar

35/ 66


mailto:cecilia.jarne@unq.edu.ar

Training Neural Networks:Back propagation

How a small change in one weight affect the loss

x > 7 > 5 > J(W)

Cecilia Jarne Neural Networks and Keras cecilia.jarne@ungq.edu.ar 36 /66


mailto:cecilia.jarne@unq.edu.ar

Training Neural Networks:

We apply chain rule

Wy w-
x—zl—j"—

yw) w09 oz

aw, ER 9z, " ow,

Repeat this for every weight in the network using gradients from later layers
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Training Neural Networks:Update gradient

Optimization through gradient descent

aj(w
W(—W—n%
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Training Neural Networks:Update gradient

Optimization through gradient descent

aJj(w
W(—W—n%

T

How can we set the
learning rate?
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Training Neural Networks:Algorithms

Gradient Descent Algorithms

Algorithm TF Implementation Reference

+ SGD Mo of s Fegrsion Foncion 195

. Adam _ g:%(:\“?zea::\;‘:'ﬁ;%ami/\ Method for Stochastic

. Adadel‘ta n iil:;z?az‘gﬁz_DADELTA An Adaptive Learning Rate
* Adagrad CEDEETEN e
- RvsProp
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The problem of Overfitting

Underfitting 4——— |deal fit ——> Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well
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Regularization

= A technique that constraint the optimization problem to avoid
complex models.

= We use it to improve the generalization on our model to unseen data.
= There are different kind of methods.
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Regularization |I: Droopout

During training randomly set some activations to 0.

Z11 221
X1

21,2 22,2 21
X2

21,3 223 Y2
X3

21,4 224
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Regularization |: Droopo

During training randomly set some activations to 0.

221
X1
Z1,2 1
X2
Zy3 V2
X3
21,4 22,4

Cecilia Jarne Neural Networks and Keras cecilia.jarne@ungq.edu.ar 44 / 66


mailto:cecilia.jarne@unq.edu.ar

Regularization Il: early stooping

To stop before having the opportunity to overfit by monitoring testing and
training data.

Under-fitting 3 Overfitting

Legend

Loss Stop training Testing
here!

Tra\nmg

Training lterations
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Summary

The Perceptron Neural Networks

* Structural building blocks * Stacking Perceptrons to * Adaptive learning
* Nonlinear activation form neural networks « Batching

functions * Optimization through « Regularization

backpropagation
& M —_—
b2 -
n——=3 > 5
-/ @ [E3 [ V
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Neural Networks: The Zoo of topologies
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Neural Networks: The Zoo of topologies
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Topologies

» Feed Foward networks (alredy seen).
= Recurrent neural networks — simple, LSTM, and GRU.

= Convolutional neural networks
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Topologies: Recurrent neural networks

Input Layer

Layer .
Hidden
Layer

Cecilia Jarne Neural Networks and Keras cecilia.jarne@ungq.edu.ar


mailto:cecilia.jarne@unq.edu.ar

Topologies: Recurrent neural networks

LSTM GRU

L& Tr o
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RNN — simple, LSTM, and GRU

= Recurrent neural networks are a class of neural networks that exploit
the sequential nature of their input.

= Inputs could be: a text, a speech, time series, and anything else where
the occurrence of an element in the sequence is dependent on the
elements that appeared before it.
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Convolutional and pooling layers

= ConvNets are a class of neural networks using convolutional and
pooling operations for progressively learning rather sophisticated
models based on progressive levels of abstraction.

= This learning via progressive abstraction resembles vision models that
have evolved over millions of years inside the human brain.

= People called it deep with 3-5 layers a few years ago, and now it has
gone up to 100-200.
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Convolutional Neural Networks.

End to end to mapping from EBSD patterns to crystallographic orientations

&* Convolutional neural network

MWW AW WA 91

N

- o
Output: (&
Crystal orientation

AN
A

DA

Covolution + Pooling layers
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About environment and installation

& python

Where can we work?

= Locally in Virtual env:
Main purpose of Python virtual env is to create an isolated
environment for Python projects. Each project can have its own
dependencies, regardless of what dependencies every other project has.
https:
//realpython.com/python-virtual-environments-a-primer/

= Google Cloud ML.
https://cloud.google.com/ai-platform/docs/
getting-started-keras

» other Services

Cecilia Jarne Neural Networks and Keras cecilia.jarne@ungq.edu.ar 55 /66


https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://cloud.google.com/ai-platform/docs/getting-started-keras
https://cloud.google.com/ai-platform/docs/getting-started-keras
mailto:cecilia.jarne@unq.edu.ar

About installation Local: What is Anaconda for?

) ANACONDA DISTRIBUTION

Most Trusted Distribution for Data Science

ANACONDA NAVIGATOR

Desktop Portal to Data Science

ANACONDA PROJECT

Portable Data Science Encapsulation

Data Science IDEs

DATA SCIENCE LIBRARIES

Analytics & Scientific Computing Visualization

Machine Learning

-~ w
Coyter Q
[ >~ Spyder

NumPy || €yseipy 2

Numba [ Bokeh J HoloViews

— -

{:Auwt&rlabl [Gimmnl

pandas lﬁ ‘ omanxmatplomh
. |__DAsK JL J

‘ H,0 } {theano

and many more!

Cecilia Jarne

CONDA

Data Science Package & Environment Manager

Neural Networks and Keras
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We can use Scikit |

classification

Cecilia Jarne

scikit-learn
algorithm cheat-sheet

few features
should be
important

dimensionality
reduction
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How do we implement this algorithms?

= From zero with math libraries and python.

= Using dedicated open source frameworks:

e Tensorflow.
o Keras.
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TensorFlow

Tensorflow is an end-to-end open source platform for machine learning. It has a
comprehensive, flexible ecosystem of tools, libraries and community resources that
lets researchers push the state-of-the-art in ML and developers easily build and
deploy ML powered applications.
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Keras Basics:

. Keras

Keras: A high-level neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano. It was developed with a focus
on enabling fast experimentation. Being able to go from idea to result with the
least possible delay is key to doing good research.

Cecilia Jarne Neural Networks and Keras cecilia.jarne@ungq.edu.ar 60 / 66


mailto:cecilia.jarne@unq.edu.ar

Keras is now embedded in Tensorfow

Ky

https://wuw.tensorflow.org/guide/keras/functional

Cecilia Jarne Neural Networks and Keras cecilia.jarne@ungq.edu.ar 61 /66


https://www.tensorflow.org/guide/keras/functional
mailto:cecilia.jarne@unq.edu.ar

Keras Basics:

s Modularity: A model is either a sequence or a graph of standalone
modules that can be combined together like LEGO blocks for building
neural networks

= The libraries predefines a large number of modules implementing
different types of neural layers, cost functions, optimizers, initialization
schemes, activation functions, and regularization schemes.

= Minimalism: The library is implemented in Python and each module is
kept short and self-describing.

» [Fasy extensibility: The library can be extended with new
functionalities.
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Keras Basics:

Python For Data Science Cheat Sheet

Model confguration
st ll weight tensors inthe model

Keras
P> fron keras.models

Learn Python for data science at www.DataCamp.com [52 moaar < Seapantizny

® o el

mport Sequentia

€ ——— 1 R N ol comai e (o

q — Binary Classfcation b>> odel compilo optind
Keras s a powerful and easy-to-use deep learning library for || £ £ror serec - ayers Trport bonee
Theano and TensorFlow that provides a high-level neural Pt | MLP: Muli-ClassClassfcation
networks API to develop and evaluate deep learning models. xemmel initiall niform?, )

A Basic Example b>> node1.add (penae (5, kernel. inic. uniforn', activation="re1u'))| | [ff MP:Regression
== b>> model.add (bense (1, kernel T izexr="uniform’, activation="signoid")) | | [i>> model.comps.
p>> from keras.models import Sequential Multi-Class Classificati
s P> from reras.layers inport Dropont
T e T N e Recurrent Neura Network
25 nodel -add (bense (512, aot vat Lon" celu', Lnput_shape=(184,)1)  Bacumens ol ot

1000,11) > model add (Deopout (0'2))
o> model.add

5> moe1 adal -
5> model.add (bense (10, activation="softmax’)) =
Regression Model Training
>> mode1 a3 (benae (64, act npos_dintrain data-shepe (1] | o> medels.fOr_tralnd, ]
ssentropy’, b>> modeladd (bense 1) i

]

etey 1) tusesa) Convolutional Neural Network (CNN) cemanie

onvzD, Haxeool 1ng2b, Flatt:
e, input, shape=x_train.shapel

tvation="relu)) ot
rat raty'1)

b>> model nse(1, activa
b>> model . conpile (opt ini zer
Tosa="bin

rnspr
raind

metrics['a
b>> model.fit (data, 1abels, epochs=10, b
bo> predictions - model.predict (dat

Data Also see NumPy, Pandas & Scikit-Learn ] | Gédiionard

validation data=(x_testd,y testd))

Evaluate Your Model's Performance

tda- | [Ipor Livation(*relu’))
o e ks i (S 55 hodel otze=(2,210)
totheszaie tese split moduleof sxieacs. cxoss valicaticn. [>> model.addl e

mode1
Keras Data Sets b>> model?.

oston_housing, b>> model2
o mode

add (Conv2D (64, (3,3), padding="same'))
tion(*reli))

fo13. predict (x testd, batch size=37)
te13.predict_classes (x_testd, batch_size-32)

Load_data ()
nousing. load daca )

Toad, odels imporc load model
b>> mode13. save (*model file.hs')
b>> my modél = load model (iny modei.nst)

Tora

Wlayers inport Enbeading, LSTM
nbedding (20000, 126))

2dd (L5TH (128, dropout=0.2, recurrent_dropout=0.2))
2dd (Dense (1, activation='sigroid’)

>> fron skle: ectlon Inport train_tes:
23 o train cest spITE (K,
i o
epochi=15,

mport to_categorical validation data=(x testd,y testd),

n = to_categorical (ytrain, nun classes) callbacks=Tearly_sFopping fionitori)
to_Categorical (y Test, hun_classe: =
£rhind, nan classes) DataCamp @

Lear ythenfor Dat Sclence nrscive)
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Keras Basics: code example

1
2
3

4
5
6
7
8
9
10
11

You can create a Sequential model  You can also simply add layers via
by passing a list of layer instances the .add() method:
to the constructor:

1 model = Sequential()

> model.add(Dense (32, input_dim=784))

£ ki o 1s i t ial
rom keras.models import Sequentia s model .add(Activation(’relu’))

from keras.layers import Dense,
Activation

model = Sequential([
Dense (32, input_shape=(784,)),
Activation(’relu’),
Dense(10),
Activation(’softmax’),

D
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More:

https://github.com/katejarne/Keras_tensorflow_course
Classes and material will be at:
http://ceciliajarne.web.unq.edu.ar/cns-2020-tutorial /
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References:

» Deep Learning (The MIT Press Essential Knowledge series)
= http://introtodeeplearning.com/ MIT course.

» https://www.tensorflow.org/

= https://keras.io/ Francois Chollet et al. Keras. 2015.

= Martin Abadi, et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015.
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