Práctica 6:

Integrales de superficie

Profesor: Cecilia Jarne (adaptada a partir de la práctica de Marcos Sirchia)

- 1. Dar una representación paramétrica y paramétrica vectorial de las superficies siguientes. Indicar la variación de los parámetros:
 - a) $S_1: 2x + y + 4z = 8$, en el primer octante
 - b) $S_2: x^2 + y^2 + z^2 = 9$ arriba de $\sqrt{6}$
 - c) $S_3: y = \sqrt{x^2 + z^2}$, limitada por y = 1, y = 3
 - d) $S_4: y = x^2$, limitada por z = 0, z = 1-y
- 2. Hallar un vector normal a las superficies del ejercicio anterior en coordenadas cartesianas y en forma paramétrica e indicar, si existen, puntos singulares.
- 3. Calcular el área de las superficies que se indican:
 - a) $S_1: y=2x$, limitada por $z=1-y^2$, z=0
 - b) $S_2: 2z = x^2 + y^2$, limitada por z = 2
- 4. Calcular: $\int \int_S dS$

f(x,y,z) = x-z, S: x = 2y, limitada por x + y + z = 2, en primer octante

5. Calcular la integral de flujo $\int \int \vec{F} \cdot \vec{n} dS$, siendo \vec{n} el vector normal unitario a S. Con $F(x,y,z) = xy\hat{\bf i} + z\hat{\bf j} + x\hat{\bf k}$, S: 2x + 5z = 10, limitada por y = 0, y = 1, \vec{n} en el primer con componente en $\hat{\bf k}$ positiva octante,

Teorema de Gauss -Teorema de Stokes

- 1. Calcular la integral triple y la integral de flujo que propone el teorema de Gauss y verificar la igualdad entre ellas analizando previamente que se cumplen todas las hipótesis.
 - a) $\vec{F}(x,y,z) = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, V limitado por $z = 2 x^2 y^2$, z = -2
 - b) $\vec{F}(x,y,z)=z\mathbf{\hat{i}}+xy\mathbf{\hat{j}}+z\mathbf{\hat{k}}$, V limitado por $2y=x^2$, 2y+z=2 , z=0
- 2. Calcular la siguiente integrales usando el T. de Stokes de ser posible $\int \int_s rot \vec{F}.\vec{n}dS$, $\vec{F}(x,y,z) = xy\hat{\bf i} + xz\vec{j} + \vec{k}$, S es el triángulo de vértices (1,0,0), (0,2,0) y (0,0,3), \vec{n} normal unitaria con componente en $\hat{\bf k}$ positiva.

1